Add like
Add dislike
Add to saved papers

Anion-Based Pseudocapacitance of the Perovskite Library La1-xSrxBO3-δ (B = Fe, Mn, Co).

We have synthesized a library of perovskite oxides with the composition La1-xSrxBO3-δ (x = 0-1; B = Fe, Mn, Co) to systematically study anion-based pseudocapacitance. The electrochemical capacitance of these materials was evaluated by cyclic voltammetry and galvanostatic charging/discharging in 1 M KOH. We find that greater oxygen vacancy content (δ) upon systematic incorporation of Sr2+ linearly increases the surface-normalized pseudocapacitance with a slope controlled by the B-site element. La0.2Sr0.8MnO2.7 exhibited the highest specific capacitance of 492 F g-1 at 5 mV s-1 relative to the Fe and Co oxides. In addition, the first all-perovskite asymmetric pseudocapacitor has been successfully constructed and characterized in neutral to alkaline aqueous electrolytes. We demonstrate that the asymmetric pseudocapacitor cell voltage can be increased by widening the difference between the B-site transition metal redox potentials in each electrode resulting in a maximum voltage window of 2.0 V in 1 M KOH. Among the three pairs of asymmetric pseudocapacitors constructed from SrCoO2.7, La0.2Sr0.8MnO2.7, and Brownmillerite (BM)-Sr2Fe2O5, the BM-Sr2Fe2O5//SrCoO2.7 combination performed the best with a high energy density of 31 Wh kg-1 at 450 W kg-1 and power density of 10,000 W kg-1 at 28 Wh kg-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app