Add like
Add dislike
Add to saved papers

Transport of Potential Manure Hormone and Pharmaceutical Contaminants through Intact Soil Columns.

Although adding manure to agricultural soils is a commonly practiced disposal method and a means to enhance soil productivity, potential environmental contamination by any associated chemicals of emerging concern (CECs) such as hormones and pharmaceuticals is not well understood. Our objective was to provide field-relevant predictions of soil transport and attenuation of 19 potential manure CECs using undisturbed soil columns irrigated under unsaturated conditions. The CEC concentrations in leached water were monitored for 13 wk using high performance liquid chromatography-time of flight-mass spectrometry (HPLC-TOF-MS), after which time soil in the cores was removed and sampled for extractable CECs. Compounds quantified in column leachate included all four of the added sulfonamide antibiotics and the nonsteroidal, anti-inflammatory drug flunixin. Only trace amounts of several of the seven hormones, five remaining antibiotics, and two antimicrobials leached from the columns from exogenous soil additions. Soil residues of all 19 compounds were detected, with highest extractable amounts for 17α-hydroxyprogesterone > triclosan (antimicrobial) > flunixin > oxytetracycline. Those CECs with the highest recoveries as calculated by summing leached and extractable amounts were flunixin (14.5%), 17α-hydroxyprogesterone (5.3%), triclosan (4.6%), and sulfadimethoxine (4.8%). Manure management to prevent CEC contamination should consider the potential environmental problems caused by negatively charged compounds with the greatest mobility (flunixin and sulfadimethoxine) and those that have long residence times in soil (triclosan, 17α-hydroxyprogesterone, flunixin, and oxytetracycline). Flunixin is particularly important given its mobility and long residence time in soil.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app