Add like
Add dislike
Add to saved papers

The concentration-dependent effect of anethole on collagen, MMP-2 and GAG in human skin fibroblast cultures.

PURPOSE: In aging skin and some skin disorders, components of skin extracellular matrix (ECM) are disturbed and therefore research to find skin drugs is important. Evaluation of anethole impact on collagen, GAGs and MMP-2 in human skin fibroblasts was the aim of this study.

MATERIALS AND METHODS: For collagen assay the Sircol dye, 5-[3 H]proline and real time-PCR were used. MMP-2 activity was detected by zymography. GAG concentration was determined using 1,9-dimethylmethylene blue (DMMB). Cell viability was assayed with MTT.

RESULTS: In cells treated with 1 and 10 μM anethole, a significant increase in collagen synthesis was demonstrated. In contrast, collagen synthesis was significantly decreased in cells exposed to 100 μM anethole. Similar alterations were found in collagen type I expression. The concentration of collagen secreted into the medium was higher only in cells exposed to 1 μM anethole, while it was lower under the influence of higher compound concentrations. It may be due to the lack of pro-MMP-2 activation at 1 μM and a significant increase in the level of MMP-2 at 10 and 100 μM anethole. GAG concentration was reduced under the influence of 100 μM anethole, whereas anethole at lower concentrations revealed the ability to prevent H2 O2 -induced GAG increase. No significant cytotoxicity of anethole to fibroblasts was noted.

CONCLUSIONS: Our findings demonstrate the concentration-dependent action of anethole on the crucial components of ECM in cultured skin fibroblasts, which may be somewhat beneficial and may possibly be developed towards a therapeutic use in some skin disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app