Add like
Add dislike
Add to saved papers

Mitochondria-targeted antioxidant delivery for precise treatment of myocardial ischemia-reperfusion injurythrough a multistage continuous targeted strategy.

Efficient delivery of antioxidant drugs into mitochondria of ischemic cardiomyocytes where reactive oxygen species largely induced is a major challenge for precise treatment of myocardial ischemia-reperfusion injury. Herein, we report a smart dual-shell polymeric nanoparticle, MCTD-NPs, which utilizes multistage continuous targeted strategy to deliver reactive oxygen species scavenger specifically to mitochondria of ischemic cardiomyocytes upon systemic administration. In vitro experiments indicated that the intracellular uptake of MCTD-NPs was specifically enhanced in hypoxia reoxygenation injured H9c2 cells. MCTD-NPs selectively delivered resveratrol to mitochondria of hypoxia reoxygenation injured H9c2 cells. In addition, MCTD-NPs increased the viability of H/R injured H9c2 cell through eliminating mitochondrial ROS, decreasing mPTP opening and blocking mitochondria-dependent apoptotic pathway. In vivo experiments revealed that MCTD-NPs increased the distribution of resveratrol in the ischemic myocardium and subsequently reduced infarct size in MI/RI rats. These results demonstrated a novel platform for specific delivery of antioxidant to mitochondria to treat MI/RI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app