Add like
Add dislike
Add to saved papers

Reconstitution of CYP3A4 active site through assembly of ligand interactions as a grid-template: Solving the modes of the metabolism and inhibition.

A hexagonal-grid based template system has been developed to a predicting tool of CYP3A4-mediated reactions through the reconstitution of the active site with the assembly of the ligands. Simultaneous interactions of flattened-shape ligands at two sites of CYP3A4, oxidizing- and triggering-sites, are essential ideas, which were supported in the simulation results of various ligands on the template. The interactions were accomplished with either uni-molecule bindings or bi-molecule bindings with ligands termed pro-metabolized and trigger molecules. The template shape was determined mainly through reciprocal comparisons of simulation results with available experiment data mainly on recombinant CYP3A4-mediated reactions of polyaromatic hydrocarbon (PAH) ligands. Through the applications of various PAH and non-PAH ligands on the template, couple region-specific interactions including mechanisms to facilitate ligand movement from the initial site to a place near heme-oxygen and to trigger of catalyses are envisioned. These are very effective tools to verify candidates of CYP3A4 ligands as the good or poor substrates. The bi-molecule binding idea also explains so called "cooperative bindings with activator/effector" as interactions with non-identical trigger molecules on this CYP3A4-template system, and also offers possible mechanisms of the non-linear kinetic behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app