Add like
Add dislike
Add to saved papers

Structurally Conserved Primate LncRNAs Are Transiently Expressed during Human Cortical Differentiation and Influence Cell-Type-Specific Genes.

Stem Cell Reports 2018 December 29
The cerebral cortex has expanded in size and complexity in primates, yet the molecular innovations that enabled primate-specific brain attributes remain obscure. We generated cerebral cortex organoids from human, chimpanzee, orangutan, and rhesus pluripotent stem cells and sequenced their transcriptomes at weekly time points for comparative analysis. We used transcript structure and expression conservation to discover gene regulatory long non-coding RNAs (lncRNAs). Of 2,975 human, multi-exonic lncRNAs, 2,472 were structurally conserved in at least one other species and 920 were conserved in all. Three hundred eighty-six human lncRNAs were transiently expressed (TrEx) and many were also TrEx in great apes (46%) and rhesus (31%). Many TrEx lncRNAs are expressed in specific cell types by single-cell RNA sequencing. Four TrEx lncRNAs selected based on cell-type specificity, gene structure, and expression pattern conservation were ectopically expressed in HEK293 cells by CRISPRa. All induced trans gene expression changes were consistent with neural gene regulatory activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app