Add like
Add dislike
Add to saved papers

Effect of varying viscosity on two-fluid model of pulsatile blood flow through porous blood vessels: A comparative study.

Microvascular Research 2019 January 12
Present work concerns the pulsatile blood flow of two-fluid model through porous blood vessels under the effect of radially varying viscosity. Blood is modeled as two-phase fluid model consisting a core region by non-Newtonian (Herschel-Bulkley) fluid and a plasma region modeled as Newtonian fluid. No slip condition has been used on wall and pressure gradient is taken as periodic function of time. Up to first order approximate solutions of governing equations are obtained using perturbation approach. A comparative analysis for relative change in flow resistance between our model and previously studied single and two-fluid models without porous layer near wall has also been done. The wall of the blood vessel is composed by a thin Brinkman (porous) layer. The stress jump condition has been imposed on fluid-porous interface. Analytical expressions for the velocity profile, flow rate, wall shear stress and flow resistance have been obtained for different regions and the effect of plasma layer thickness, varying viscosity, yield stress, permeability and viscosity ratio parameter on the flow variables are pictorially discussed. It is perceived that values of flow rate for two-fluid model with porous region near wall is higher in comparison to two-fluid model without porous region near wall. Present study reveals a significant impact of glycocalyx layer on blood flow through blood vessels with a porous layer near wall.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app