Add like
Add dislike
Add to saved papers

Identification of specific integrin cross-talk for dermal fibroblast cell adhesion using a mixed peptide-chitosan matrix.

Extracellular matrix molecules are recognized by several integrin subtypes, making identification of cross-talk among different integrin subtypes difficult. Here, we evaluated the cross-talk of integrin subtypes using four different integrin-binding peptides (FIB1; integrin αvβ3/α5β1, A2G10; integrin α6β1, EF1zz; integrin α2β1, or 531; integrin α3β1) derived from extracellular matrix molecules. Various combinations of two different integrin-binding peptides were mixed and conjugated on a chitosan matrix at various molar ratios and were evaluated for cell attachment activity. FIB1/A2G10 (molar ratio 5:5; total 10 nmol/well)-chitosan matrix significantly enhanced cell attachment activity compared with sum of the cell attachment activity on FIB1 (5 nmol/well)-chitosan matrices and A2G10 (5 nmol/well)-chitosan matrices, respectively. However, none of the other peptides showed a significant activity change when they were mixed and conjugated on a chitosan matrix. We investigated the mechanisms of this enhancement. FIB1/A2G10 (8:2 or 6:4)-chitosan matrix increased the cell spreading, phosphorylation of focal adhesion kinase at Y397, and slightly decreased phosphorylation of caveolin-1 at Y14 in fibroblasts compared with FIB1-chitosan and A2G10-chitosan matrices. These results indicate that FIB1/A2G10 (8:2 or 6:4)-chitosan matrix synergistically enhances cell attachment, suggesting that integrins αvβ3/α5β1 and α6β1 are involved in a cross-talk and synergistically enhance cell attachment. These findings also suggest that the mixed peptide-chitosan matrix system can regulate the ratio of two different peptides and is useful for evaluating cellular functions through receptor-specific cross-talk. Further, FIB1/A2G10 (8:2 or 6:4)-chitosan matrix could be a useful material for tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app