Add like
Add dislike
Add to saved papers

A new hydrophilic polysulfone hemodialysis membrane can prevent platelet-neutrophil interactions and successive neutrophil activation.

PURPOSE:: Microaggregates have often been observed during hemodialysis and are clearly associated with complications of hemodialysis therapy. In this study, we aimed to clarify the effects of two polysulfone membranes, with different abilities to activate blood cells, on the formation of these microaggregates; we also investigated their molecular mechanisms.

METHODS:: Human whole blood was circulated through a mini-module dialyzer using the membranes in vitro; platelet-neutrophil complexes in blood were determined by flow cytometry. Isolated human neutrophils were incubated with the membranes in plasma, in the presence or absence of platelets, followed by flow cytometric analysis of intracellular reactive oxygen species and cell-surface activated CD11b on neutrophils.

RESULTS:: CX-U, a conventional polysulfone membrane with remarkable cell activation, induced the formation of platelet-neutrophil complexes; however, NV-U, a new hydrophilic polysulfone membrane with slight or no cell activation, did not cause complex formation. Moreover, CX-U-induced reactive oxygen species production and the increase in activated CD11b expression on neutrophils were enhanced by platelets. On the other hand, NV-U hardly affected neutrophil activation, regardless of whether platelets were present or not. The enhancement of CX-U-induced neutrophil activations by platelets was greatly inhibited by anti-CD62P antibody.

CONCLUSION:: The ability of polysulfone membranes to activate blood cells is closely related to platelet-neutrophil interaction. Therefore, a biocompatible membrane, like NV-U, can be expected to prevent microaggregate formation during hemodialysis and avoid subsequent cell activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app