Add like
Add dislike
Add to saved papers

Gestational and Lactational Exposure to Malathion Affects Antioxidant Status and Neurobehavior in Mice Pups and Offspring.

Environmental factors such as pesticides are considered key determinants of brain damage and brain dysfunction. In the present work, we investigated the effect of an organophosphate pesticide, i.e., malathion, administrated peri- and postnatally on the antioxidant system as well as on acetylcholine esterase (AChE) activity in the brains of mice pups during the three postnatal weeks. Furthermore, we analyzed the behavior of the offspring just after weaning to assess the eventual effect of the pesticide on anxiety traits and social interaction. Concerning the biochemical biomarkers, the continuous treatment with malathion given either at a low dose of 5 mg/kg or at a medium one, 15 mg/kg, causes alterations in the activities of catalase, superoxide dismutase, glutathione S-transferase, and glutathione peroxidase, accompanied by high level of peroxidation of membrane lipids, indicating a disturbance in intracellular redox homeostasis with subsequent increased intracellular oxidative stress. The effect was more pronounced when the high dose was applied. This was also demonstrated for the activity of AChE, downregulated at all postnatal ages investigated (5, 15, and 21), whereas the low dose (5 mg/kg) did not alter this enzymatic activity which is in line with the absence of locomotor activity alteration as assessed by open field (OF). With regard to this last test, results obtained show also that the treated offspring mice develop an anxiogenic state as evidenced by open field as well as an impairment of social interaction. Altogether, these results provide an accurate characterization of the association between neurobehavioral outcomes and brain alterations following malathion administrated in gestational and lactational periods, even given at low dose, classified as safe, and indicate clearly that the developing brain is sensitively vulnerable to this organophosphate pesticide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app