Add like
Add dislike
Add to saved papers

Polyphenols as resistance modulators in Arcobacter butzleri.

Folia Microbiologica 2019 January 14
Arcobacter butzleri is an emerging human and animal pathogen for which an increased prevalence of resistance to antibiotics has been observed, and so alternative compounds to modulate resistance of A. butzleri are required. This work aims to study the potential use of several polyphenols as efflux pump inhibitors (EPIs) and to evaluate their interaction with antibiotics, in order to enhance antibiotic activity against A. butzleri. The minimum inhibitory concentration (MIC) of (-)-epicatechin, (+)-catechin, rutin, gallic acid, caffeic acid, chlorogenic acid, resveratrol, pterostilbene, and pinosylvin was determined, in absence and presence of four known EPIs. Subsequently, ethidium bromide accumulation in presence of subinhibitory concentrations of polyphenols was evaluated, and the synergistic potential of the compounds with antibiotics was assessed by checkerboard dilution test. Only stilbenes presented activity against A. butzleri, with MIC values ranging between 64 and 512 μg/mL. The MIC determination of the polyphenols in the presence of subinhibitory concentrations of known EPIs showed that efflux pumps play a role in the resistance to these compounds. Stilbenes also induced a higher intracellular accumulation of ethidium bromide, indicating that they may inhibit the activity of efflux pumps. Checkerboard assays showed that several combinations of polyphenol/antibiotic had an additive effect against A. butzleri. Overall, the results indicate that some polyphenols reduce A. butzleri resistance to antibiotics, suggesting the potential of stilbenes as EPIs. The potential of resveratrol and pinosylvin as resistance modulators was evidenced, insofar as these compounds can even revert antibiotic resistance. Therefore, the use of polyphenols as resistance modulators could be an alternative to overcome the decreasing susceptibility of A. butzleri to antibiotics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app