Add like
Add dislike
Add to saved papers

Transcriptional study of the enhanced ε-poly-L-lysine productivity in culture using glucose and glycerol as a mixed carbon source.

A glucose-glycerol mixed carbon source (MCS) can substantially reduce batch fermentation time and improve ε-poly-L-lysine (ε-PL) productivity, which was of great significance in industrial microbial fermentation. This study aims to disclose the physiological mechanism by transcriptome analyses. In the MCS, the enhancements of gene transcription mainly emerged in central carbon metabolism, L-lysine synthesis as well as cell respiration, and these results were subsequently proved by quantitative real-time PCR assay. Intracellular L-lysine determination and exhaust gas analysis further confirmed the huge precursor L-lysine pool and active cell respiration in the MCS. Interestingly, in the MCS, pls was remarkably up-regulated than those in single carbon sources without transcriptional improvement of HrdD, which indicated that the improved ε-PL productivity was supported by other regulators rather than hrdD. This study exposed the physiological basis of the improved ε-PL productivity in the MCS, which provided references for studies on other biochemicals production using multiple substrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app