Add like
Add dislike
Add to saved papers

Suppression of Syk activation by resveratrol inhibits MSU crystal-induced inflammation in human monocytes.

Monosodium urate (MSU) crystals are an endogenous sterile particulate that has been identified as a potent damage-associated molecular pattern (DAMP). In humans, the induction of IL-1β production through MSU-induced NLRP3 inflammasome activation in monocytes/macrophages is responsible for pathogenesis of gouty arthritis. It was recently reported that in a murine model of this disease, resveratrol decreases MSU-induced recurrent attacks of gouty arthritis. Despite its demonstrated anti-inflammatory effects, the mechanisms underlying resveratrol-mediated repression of IL-1β production in MSU-activated monocytes remain poorly understood. Here, we show that resveratrol suppresses secretion of active IL-1β by human primary monocytes stimulated with MSU crystals through suppression of Syk activation. Metabolic labeling and pull-down assays to investigate de novo protein synthesis clearly demonstrated that intracellular pro-IL-1β synthesis is rapidly repressed in monocytes after resveratrol treatment due to decreased phosphorylation of Syk and p38. Resveratrol also inhibited NLRP3 inflammasome activation in MSU-stimulated monocytes by suppressing oligomerization of ASC. Furthermore, resveratrol exerted a beneficial effect by reducing IL-1β production and inhibiting neutrophil recruitment in a mouse model of MSU-mediated peritonitis. Our findings suggest that resveratrol exerts anti-inflammatory effects via post-translational regulation of IL-1β production and, thus, may prove beneficial for the treatment of MSU crystal-mediated sterile inflammation. KEY MESSAGE: Resveratrol has negative effects on pro-IL-1β synthesis through Syk and p38. Resveratrol inhibits oligomerization of ASC. Resveratrol is beneficial in a mouse model of MSU-induced peritonitis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app