Add like
Add dislike
Add to saved papers

Identification of the visco-hyperelastic properties of brain white matter based on the combination of inverse method and experiment.

To fully understand the brain injury mechanism and develop effective protective approaches, an accurate constitutive model of brain tissue is firstly required. Generally, the brain tissue is regarded as a kind of viscoelastic material and is simply used in the simulation of brain injury. In fact, the brain tissue has the behavior of the visco-hyperelastic property. Therefore, this paper presents an effective computational inverse method to determine the material parameters of visco-hyperelastic constitutive model of brain white matter through compression experiments. First, with the help of 3D hand scanner, 3D geometries of brain white matter specimens are obtained to make it possible to establish the accurate simulation models of the specific specimens. Then, the global sensitivity analysis is adopted to evaluate the importance of the material parameters and further determine the parameters which may be identified. Subsequently, based on the genetic algorithm, the optimal material parameters of brain white matter can be identified by minimizing the match error between the experimental and simulated responses. Finally, by comparing the experiment and simulation results on the other specific specimen, and the simulation results with the material parameters from the references, respectively, the accuracy and reliability of the constitutive model parameters of brain white matter are demonstrated. Graphical abstract The main flowchart of the computational inverse technique for determining the material parameters of specimen-specific on brain white matter. Generalization: Combining the computational inverse method and unconfined uniaxial compression experiment of the specific specimen, an effective identification method is presented to accurately determine the hyperelastic and viscoelastic parameters of brain white matter in this paper.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app