Add like
Add dislike
Add to saved papers

Heme oxygenase 1 facilitates cell proliferation via the B-Raf-ERK signaling pathway in melanoma.

BACKGROUND: Despite therapeutic advancements (e.g. B-RAF inhibitors) targeting cutaneous melanoma, many cellular processes, including inducible heme oxygenase 1 (HO-1), counteract treatments for malignancies. So there is an urgent need to find biological treatment targets, develop new therapeutic approaches and achieve longer responses. This study aimed to explore the relationship of HO-1 and B-Raf via mediating ERK1/2 signaling on cell cycle in melanoma.

METHODS: Immunohistochemistry was applied to evaluate the levels of HO-1 and B-Raf expression in melanoma tissues and adjacent healthy tissues. Co-immunoprecipitation (Co-IP) assessed the interaction of HO-1 with B-Raf. Further study overexpression and knock-down of HO-1 in A375 cell lines, especially knockout HO-1 using CRISPR-Cas9, verified HO-1 regulate cell proliferation in vivo and in vitro. Finally, Western blot analysis and qRT-PCR were performed to investigate the mechanisms by which HO-1 mediates cell cycle by B-RAF-ERK1/2 signaling.

RESULTS: First, histology and Co-IP show that HO-1 interacts with B-Raf directly in melanoma tissue. Further study illustrated that HO-1 overexpression promotes melanoma cell proliferation while HO-1 reduction represses melanoma cell proliferation because of HO-1 affects cell cycle. Mechanistic studies revealed that HO-1 was associated with a marked activation of B-RAF-ERK1/2 signaling and led to CDK2/cyclin E activation, thereby promoting melanoma proliferation.

CONCLUSIONS: Our result reveals a previously unknown mechanism that the HO-1-B-RAF-ERK axis plays an important role in melanoma cell proliferation. Therapeutic target on HO-1 could be a novel method for treating melanoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app