Add like
Add dislike
Add to saved papers

A new perspective of triptolide-associated hepatotoxicity: Liver hypersensitivity upon LPS stimulation.

Toxicology 2019 January 9
OBJECTIVE: This study was designed to investigate whether the mice treated with triptolide (TP) could disrupt the liver immune homeostasis, resulting in the inability of the liver to eliminate the harmful response induced by lipopolysaccharide (LPS). In addition, we explored whether apoptosis and necroptosis played a critical role in the progression of the hepatotoxicity induced by TP-LPS co-treatment.

METHODS: Female C57BL/6 mice were continuously administrated with two different doses of TP (250 μg/kg and 500 μg/kg) intragastrically for 7 days. Subsequently, a single dose of LPS (0.1 mg/kg) was injected intraperitoneally to testify whether the liver possesses the normal immune function to detoxicate the exogenous pathogen's stimulation. To prove the involvement of apoptosis and necroptosis in the liver damage induced by TP-LPS co-treatment, apoptosis inhibitor Z-VAD-FMK (FMK) and necroptosis inhibitor necrostatin (Nec-1) were applied before the stimulation of LPS to diminish the apoptosis and necroptosis respectively.

RESULTS: TP or LPS alone did not induce significant liver damage. However, compared with TP or LPS treated mice, TP-LPS co-treatment mice showed obvious hepatotoxicity with a remarkable elevation of serum ALT and AST accompanied by abnormal bile acid metabolism, a depletion of liver glycogen storage, aberrant glucose metabolism, an up-regulation of inflammatory cell infiltration, and an increase of apoptosis and necroptosis. Intraperitoneal injection of FMK or Nec-1 could counteract the toxic reactions induced by TP-LPS co-treatment.

CONCLUSION: TP could disrupt the immune response, resulting in hypersensitivity of the liver upon LPS stimulation, ultimately leading to abnormal liver function and cell death. Additionally, apoptosis and necroptosis played a vital role in the development of liver damage induced by TP-LPS co-treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app