JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Trigeminal neuropathic pain development and maintenance in rats are suppressed by a positive modulator of α6 GABA A receptors.

γ-Aminobutyric acid type A (GABAA ) receptors containing the α6 subunit are located in trigeminal ganglia, and their reduction by small interfering RNA increases inflammatory temporomandibular and myofascial pain in rats. We thus hypothesized that enhancing their activity may help in neuropathic syndromes originating from the trigeminal system. Here, we performed a detailed electrophysiological and pharmacokinetic analysis of two recently developed deuterated structurally similar pyrazoloquinolinone compounds. DK-I-56-1 at concentrations below 1 µM enhanced γ-aminobutyric acid (GABA) currents at recombinant rat α6β3γ2, α6β3δ and α6β3 receptors, whereas it was inactive at most GABAA receptor subtypes containing other α subunits. DK-I-87-1 at concentrations below 1 µM was inactive at α6-containing receptors and only weakly modulated other GABAA receptors investigated. Both plasma and brain tissue kinetics of DK-I-56-1 were relatively slow, with half-lives of 6 and 13 hr, respectively, enabling the persistence of estimated free brain concentrations in the range 10-300 nM throughout a 24-hr period. Results obtained in two protocols of chronic constriction injury of the infraorbital nerve in rats dosed intraperitoneally with DK-I-56-1 during 14 days after surgery or with DK-I-56-1 or DK-I-87-1 during 14 days after trigeminal neuropathy were already established, demonstrated that DK-I-56-1 but not DK-I-87-1 significantly reduced the hypersensitivity response to von Frey filaments. SIGNIFICANCE: Neuropathic pain induced by trigeminal nerve damage is poorly controlled by current treatments. DK-I-56-1 that positively modulates α6 GABAA receptors is appropriate for repeated administration and thus may represent a novel treatment option against the development and maintenance of trigeminal neuropathic pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app