Add like
Add dislike
Add to saved papers

Acetylation modulates LC3 stability and cargo recognition.

FEBS Letters 2019 January 12
LC3 is a key autophagy-related protein involved in both autophagosome formation and autophagy cargo recruitment. Despite these functions being exerted by deacetylated LC3, this protein is more abundantly distributed in its acetylated form. Here, we reveal that the stability and cargo recognition ability of LC3 are highly dependent on its acetylation. Through detecting the diffusion rate of soluble LC3 by fluorescence recovery after photobleaching (FRAP), we found that nutrient-state-related acetylation inhibited LC3 complex formation. Acetylation blocked LC3's interaction with p62, the autophagic cargo receptor, preventing the mis-targeting of p62 to non-autophagic LC3 and thus permitting the efficient degradation of autophagic cargoes. Acetylation also inhibited LC3 proteasome-dependent degradation, thus maintaining LC3 as a long-lived protein that could serve as a reserve. Altogether, acetylated LC3, the non-activated form, is suitable for storage and avoids inopportune interactions with other proteins, assuring autophagic degradation. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app