JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Transforming of the Tumor Microenvironment: Implications for TGF- β Inhibition in the Context of Immune-Checkpoint Therapy.

Significant breakthroughs have been achieved in the fields of oncogenic signaling inhibition and particularly immune-checkpoint blockade has triggered substantial enthusiasm during the last decade. Antibody-mediated blockade of negative immune-checkpoint molecules (e.g., PD-1/PD-L1, CTLA-4) has been shown to achieve profound responses in several of solid cancers. Unfortunately, these responses only occur in a subset of patients or, after initial therapy response, these tumors eventually relapse. Thus, elucidating the determinants of intrinsic or therapy-induced resistance is the key to improve outcomes and developing new treatment strategies. Several cytokines and growth factors are involved in the tight regulation of either antitumor immunity or immunosuppressive tumor-promoting inflammation within the tumor microenvironment (TME), of which transforming growth factor beta (TGF- β ) is of particular importance. This review will therefore summarize the recent progress that has been made in the understanding of how TGF- β blockade may have the capacity to enhance efficacy of immune-checkpoint therapy which presents a rational strategy to sustain the antitumor inflammatory response to improve response rates in tumor patients. Finally, I will conclude with a comprehensive summary of clinical trials in which TGF- β blockade revealed therapeutic benefit for patients by counteracting tumor relapses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app