EVALUATION STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Prediction of Recurrence after Transsphenoidal Surgery for Cushing's Disease: The Use of Machine Learning Algorithms.

BACKGROUND: There are no reliable predictive models for recurrence after transsphenoidal surgery (TSS) for Cushing's disease (CD).

OBJECTIVES: This study aimed to develop machine learning (ML)-based predictive models for CD recurrence after initial TSS and to evaluate their performance.

METHOD: A total of 354 CD patients were included in this retrospective, supervised learning, data mining study. Predictive models for recurrence were developed according to 17 variables using 7 algorithms. Models were evaluated based on the area under the receiver operating characteristic curve (AUC).

RESULTS: All patients were followed up for over 12 months (mean ± SD 43.80 ± 35.61). The recurrence rate was 13.0%. Age (p < 0.001), postoperative morning serum cortisol nadir (p = 0.002), and postoperative (p < 0.001) and preoperative (p = 0.04) morning adrenocorticotropin (ACTH) level were significantly related to recurrence. AUCs of the 7 models ranged from 0.608 to 0.781. The best performance (AUC = 0.781, 95% CI 0.706, 0.856) appeared when 8 variables were introduced to the random forest (RF) algorithm, which was much better than that of logistic regression (AUC = 0.684, p = 0.008) and that of using only postoperative morning serum cortisol (AUC = 0.635, p < 0.001). According to the feature selection algorithms, the top 3 predictors were age, postoperative serum cortisol, and postoperative ACTH.

CONCLUSIONS: Using ML-based models for prediction of the recurrence after initial TSS for CD is feasible, and RF performs best. The performance of most of ML-based models was significantly better than that of some conventional models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app