Add like
Add dislike
Add to saved papers

Influence of negative pressure wound therapy on peri-prosthetic tissue vascularization and inflammation around porous titanium percutaneous devices.

Negative Pressure Wound Therapy (NPWT) has been shown to limit downgrowth around percutaneous devices in a guinea pig model. However, the influence of NPWT on peri-prosthetic tissue characteristics leading to limited downgrowth is still unclear. In order to investigate this, 12 CD hairless rats were assigned into two groups, NPWT and Untreated (n = 6/group). Each animal was implanted with a porous coated titanium percutaneous device and was dressed with a gauze and semi-occlusive base dressing. Post-surgery, animals in the NPWT Group received a regimen of NPWT treatment (-70 to -90 mmHg). After 4 weeks, tissue was collected over the device and stained with CD31 and CD68 to quantify blood vessel density and inflammation, respectively. The device with the surrounding tissue was also collected to quantify downgrowth. NPWT treatment led to a 1.6-fold increase in blood vessel densities compared to untreated tissues (p < 0.05). NPWT treatment also resulted in half the downgrowth as the Untreated Group, although not statistically significant (p = 0.19). Additionally, the results showed a trend toward increased CD68 cell densities in the NPWT Group compared to the Untreated Group (p = 0.09). These findings suggest that NPWT may influence wound healing responses in percutaneous devices by increasing blood vessel densities, limiting downgrowth and potentially increasing inflammation. Overall, NPWT may enhance tissue vascularity around percutaneous devices, especially in patients with impaired wound healing. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res B Part B, 2019.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app