Add like
Add dislike
Add to saved papers

Discovery of Novel Transient Receptor Potential Vanilloid 4 (TRPV4) Agonists as Regulators of Chondrogenic Differentiation: Identification of Quinazolin-4(3H)-ones and in vivo Studies on a Surgically Induced Rat Model of Osteoarthritis.

Osteoarthritis (OA) is a degenerative disease characterized by joint destruction and loss of cartilage. There are many unmet needs in the treatment of OA and there are few promising candidates for disease-modifying OA drugs, particularly anabolic agents. Here, we describe the identification of novel quinazolin-4(3H)-one derivatives which stimulate chondrocyte cartilage matrix production via TRPV4 and mitigate damaged articular cartilage. We successfully identified the water-soluble, highly potent quinazolin-4(3H)-one derivative 36 and studied its intra-articular physicochemical profile to use in in vivo surgical OA model studies. Compound 36∙HCl provided relief from OA damage in a rat medial meniscal tear (MT) model. Specifically, 36∙HCl dose-dependently suppressed cartilage degradation and enhanced the mRNA expression of aggrecan and SOX9 in cartilage isolated from MT-operated rat knees compared with knees treated with vehicle. These results suggest that 36 induces anabolic changes in articular cartilage and consequently reduces OA progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app