Add like
Add dislike
Add to saved papers

The extracellular matrix and Ca(2+) signaling mechanisms.

Physiological Research 2019 January 11
The extracellular matrix (ECM) consists of proteins, glycosaminoglycans and glycoproteins, that support the dynamic interactions between cells, including intercellular communication, cell attachment, cell differentiation, cell growth and migration. As such, the ECM represents an essential and very sensitive system within the tissue microenvironment that is involved in processes such as tissue regeneration and carcinogenesis. The aim of the present review is to evaluate its diversity through Ca(2+) signaling and its role in muscle cell function. Here, we discuss some methodological approaches dissecting Ca(2+) handling mechanisms in myogenic and non-myogenic cells, e.g. the importance of Ca(2+) and calpains in muscle dystrophy. We also consider the reconstruction of skeletal muscle by colonization of decellularized ECM with muscle-derived cells isolated from skeletal muscle. Therefore, it is necessary to establish new methodological procedures based on Ca(2+) signaling in skeletal muscle cells and their effect on ECM homeostasis, allowing the monitoring of skeletal muscle reconstruction and organ repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app