JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Machine learning models for predicting endocrine disruption potential of environmental chemicals.

We introduce here ML4Tox, a framework offering Deep Learning and Support Vector Machine models to predict agonist, antagonist, and binding activities of chemical compounds, in this case for the estrogen receptor ligand-binding domain. The ML4Tox models have been developed with a 10 × 5-fold cross-validation schema on the training portion of the CERAPP ToxCast dataset, formed by 1677 chemicals, each described by 777 molecular features. On the CERAPP "All Literature" evaluation set (agonist: 6319 compounds; antagonist 6539; binding 7283), ML4Tox significantly improved sensitivity over published results on all three tasks, with agonist: 0.78 vs 0.56; antagonist: 0.69 vs 0.11; binding: 0.66 vs 0.26.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app