ENGLISH ABSTRACT
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

[Startup Strategies for the SNAD Granular Sludge Process at Low Temperature].

To study the effect of the startup strategies on the simultaneous partial nitrification, ANAMMOX, and denitrification (SNAD) granular sludge processes, these processes were initiated by starting the completely autotrophic nitrogen removal over nitrite (CANON) process and anaerobic ammonia oxidation-denitrification (SAD) process at 12.7℃ and 18.3℃, respectively. The results show that the ammonia nitrogen was almost completely removed and the total nitrogen removal rate reached 86.7% after the R1 reactor was successfully started. When the ammonia concentration was low, the total nitrogen removal rate in the effluent decreased to 75.3%, the total nitrogen concentration in the effluent was~10 mg·L-1 , and excessive proliferation of the NOB was observed. The total nitrogen concentration in the effluent exceeded the 1A level of the integrated discharge standard of water pollutants applied in Beijing City. After the R2 reactor was successfully started, the effluent contained almost no ammonia nitrogen and the total nitrogen removal rate was~89.1%, that is, slightly higher than that of the R1 reactor. When the ammonia concentration was low, the concentration of ammonia nitrogen in effluent was less than 1.0 mg·L-1 and the total nitrogen concentration in the effluent was less than 6 mg·L-1 . The concentrations of ammonia nitrogen and total nitrogen in the effluent reached the 1A level of the integrated discharge standard of water pollutants applied in Beijing City. First, the startup of the SAD process gradually eliminated the NOB from the system through anaerobic operation in the initial stage of the startup, maintained the stability of the system, provided a good basis for the subsequent aeration to start the SNAD process, maintained the stable operation of the reactor, and the long-term discharge of total nitrogen reached the standard.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app