Add like
Add dislike
Add to saved papers

Formation Mechanism, In vitro and In vivo Evaluation of Dimpled Exenatide Loaded PLGA Microparticles Prepared by Ultra-Fine Particle Processing System.

AAPS PharmSciTech 2019 January 10
Spherical poly (D, L-lactic-co-glycolic acid) microparticles (PLGA-MPs) have long been investigated in order to achieve sustained delivery of proteins/peptides. However, the formation mechanism and release characteristics of the specific shape MPs were still unknown. This study aimed to develop a novel-dimpled exenatide-loaded PLGA-MPs (Exe-PLGA-MPs) using an ultra-fine particle processing system (UPPS) and investigate the formation mechanism and release characteristics. Exe-PLGA-MPs were prepared by UPPS and optimized based on their initial burst within the first 24 h and drug release profiles. Physicochemical properties of Exe-PLGA-MPs, including morphology, particle size, and structural integrity of Exe extracted from Exe-PLGA-MPs, were evaluated. Furthermore, pharmacokinetic studies of the optimal formulation were conducted in Sprague-Dawley (SD) rats to establish in vitro-in vivo correlations (IVIVC) of drug release. Exe-PLGA-MPs with dimpled shapes and uniform particle sizes achieved a high encapsulation efficiency (EE%, 91.50 ± 2.65%) and sustained drug release for 2 months in vitro with reduced initial burst (20.42 ± 1.64%). Moreover, the pharmacokinetic studies revealed that effective drug concentration could be maintained for 3 weeks following a single injection of dimpled Exe-PLGA-MPs with high IVIVC. Dimpled PLGA-MPs prepared using the UPPS technique could thus have great potential for sustained delivery of macromolecular proteins/peptides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app