Add like
Add dislike
Add to saved papers

Stability Analysis of Mathematical Model including Pathogen-Specific Immune System Response with Fractional-Order Differential Equations.

In this study, the mathematical model examined the dynamics between pathogen and specific immune system cells (memory T cells) for diseases such as chronic infection and cancer in which nonspecific immune system cells are inadequate to destroy the pathogen and has been suggested by using a system of the fractional-order differential equation with multi-orders. Qualitative analysis of the proposed model reveals the equilibrium points giving important ideas about the proliferation of the pathogen and memory T cells. According to the results of this analysis, the possible scenarios are as follows: the absence of both pathogen and memory T cells, only the existence of pathogen, and the existence of both pathogen and memory T cells. The qualitative analysis of the proposed model has expressed the persistent situations of the disease where the memory T cells either do not be able to respond to the pathogen or continue to exist with the disease-causing pathogen in the host. Results of this analysis are supported by numerical simulations. In the simulations, the time-dependent size of the tumor population under the pressure of the memory T cells was tried to be estimated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app