Add like
Add dislike
Add to saved papers

The Structures, Spectroscopic Properties, and Photodynamic Reactions of Three [RuCl(QN)NO] - Complexes (HQN = 8-Hydroxyquinoline and Its Derivatives) as Potential NO-Donating Drugs.

The structures and spectral properties of three ruthenium complexes with 8-hydroxyquinoline (Hhqn) and their derivatives 2-methyl-8-quinolinoline (H2mqn) and 2-chloro-8-quiolinoline (H2cqn) as ligands (QN = hqn, 2mqn, or 2cqn) were calculated with density functional theory (DFT) at the B3LYP level. The UV-Vis and IR spectra of the three [RuCl(QN)NO]- complexes were theoretically assigned via DFT calculations. The calculated spectra reasonably correspond to the experimentally measured spectra. Photoinduced NO release was confirmed through spin trapping of the electron paramagnetic resonance spectroscopy (EPR), and the dynamic process of the NO dissociation upon photoirradiation was monitored using time-resolved infrared (IR) spectroscopy. Moreover, the energy levels and related components of frontier orbitals were further analyzed to understand the electronic effects of the substituent groups at the 2nd position of the ligands on their photochemical reactivity. This study provides the basis for the design of NO donors with potential applications in photodynamic therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app