Add like
Add dislike
Add to saved papers

Sensitivity of KeratinoSens TM and h-CLAT for detecting minute amounts of sensitizers to evaluate botanical extract.

Cosmetic ingredients are often complex mixtures from natural sources such as botanical extracts that might contain minute amounts of constituents with sensitizing potential. The sensitivity of in vitro skin sensitization test methods such as KeratinoSensTM and h-CLAT for the detection of minute amounts of sensitizer in mixtures remains unclear. In this study, we assessed the detection sensitivity of the binary test battery comprising KeratinoSensTM and h-CLAT for minute amounts of sensitizers by comparing the LLNA EC3 (estimated concentration of a substance expected to produce a stimulation index of 3) values to the minimum detection concentrations (MDCs) exceeding the positive criteria for each of the two in vitro test methods. 146 sensitizers with both sets of in vitro data and LLNA data were used. MDC values for KeratinoSensTM and h-CLAT were calculated from exposure concentrations exceeding positive criteria for each in vitro test method (EC1.5 and minimum induction thresholds, respectively). The dilution rate used to expose culture medium was also considered. For 86% of analyzed sensitizers, the in vitro test methods showed MDC values lower than LLNA EC3 values, suggesting that the binary test battery with KeratinoSensTM and h-CLAT have greater sensitivity for detection of minute amounts of sensitizer than LLNA. These results suggest the high applicability of KeratinoSensTM and h-CLAT for detecting skin sensitizing constituents present in botanical extract.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app