Add like
Add dislike
Add to saved papers

Rice OsRH58, a chloroplast DEAD-box RNA helicase, improves salt or drought stress tolerance in Arabidopsis by affecting chloroplast translation.

BMC Plant Biology 2019 January 10
BACKGROUND: Despite increasing characterization of DEAD-box RNA helicases (RHs) in chloroplast gene expression regulation at posttranscriptional levels in plants, their functional roles in growth responses of crops, including rice (Oryza sativa), to abiotic stresses are yet to be characterized. In this study, rice OsRH58 (LOC_Os01g73900), a chloroplast-localized DEAD-box RH, was characterized for its expression patterns upon stress treatment and its functional roles using transgenic Arabidopsis plants under normal and abiotic stress conditions.

RESULTS: Chloroplast localization of OsRH58 was confirmed by analyzing the expression of OsRH58-GFP fusion proteins in tobacco leaves. Expression of OsRH58 in rice was up-regulated by salt, drought, or heat stress, whereas its expression was decreased by cold, UV, or ABA treatment. The OsRH58-expressing Arabidopsis plants were taller and had more seeds than the wild type under favorable conditions. The transgenic plants displayed faster seed germination, better seedling growth, and a higher survival rate than the wild type under high salt or drought stress. Importantly, levels of several chloroplast proteins were increased in the transgenic plants under salt or dehydration stress. Notably, OsRH58 harbored RNA chaperone activity.

CONCLUSIONS: These findings suggest that the chloroplast-transported OsRH58 possessing RNA chaperone activity confers stress tolerance by increasing translation of chloroplast mRNAs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app