Add like
Add dislike
Add to saved papers

Dopamine-functionalized upconversion nanoparticles as fluorescent sensors for organophosphorus pesticide analysis.

Talanta 2019 April 2
Organophosphorus pesticide (OP) residues in agricultural products, herbal medicines and environment have attracted increasing concerns because they cause high healthy risk. Herein, a tyrosinase-mediated photoinduced electron transfer system was constructed for OPs analysis by using dopamine-functionalized upconversion nanoparticles (UCNPs) as fluorescent (FL) sensors. Dopamine quinone was produced by tyrosinase-mediated oxidation of dopamine on the surface of UCNPs, which acted as electron accepter to quench the FL emission of UCNPs. The FL quenching was inhibited by OP since it inhibited the activity of tyrosinase. Chlorpyrifos was used as a model analyte to investigate the feasibility of the FL sensor for the analysis of OPs. Under the optimal conditions, chlorpyrifos can be analysed in a wide range of 1.0 ‒ 1000 ng mL-1 , with a detection limit of 0.38 ng mL-1 (3σ). Some other groups pesticides, including organonitrogen pesticide, organochlorine pesticide and chloronicotinyl insecticide all showed negligible interference. The proposed sensor was successfully used to analyse chlorpyrifos spiked in Balloonflower and Angelica with acceptable recovery values of 95.4-120.0%, demonstrating its application potential for real samples. It exhibits some advantages like low cost, high sensitivity and free of autofluorescent interference and photobleaching.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app