Add like
Add dislike
Add to saved papers

Repositioning Tacrolimus: Evaluation of the Effect of Short-Term Tacrolimus Treatment on Osteoprogenitor Cells and Primary Cells for Bone Regenerative Engineering.

Small-molecule-based bone regenerative engineering is an encouraging strategy for repair and regeneration of skeletal tissue. Using osteogenic small molecules for engineering bone tissue has several potential benefits over polypeptide-based approaches. Interestingly, hundreds of such small molecules possess the capability to promote osteogenesis, and several of these are already approved by the FDA for use in other applications, indicating their safety for human use. However, the need for their use at a high frequency and/or duration, due to their short half-life and nonspecificity, is still problematic. We, and others, have identified several non-FDA-approved small-molecule-based compounds that induce long-lasting osteogenic effects following short-term (<24 h) treatment. In this study, however, we have performed a proactive screen to investigate and compare the osteogenic effects of several preselected FDA-approved small-molecule drugs in vitro using osteoprogenitor MC3T3-E1 cells. Our results demonstrate that treatment with the small-molecule drug tacrolimus (FK-506) for 24 h significantly enhanced long-lasting osteogenic responses in both osteoprogenitor cells and primary cell cultures. In addition, we tested whether a short-term treatment with FK-506 is able to induce osteogenic differentiation of cells seeded on a polymeric scaffold in vitro. Using an osteogenic small molecule that has long-lasting effects despite a short duration of exposure to cells may alleviate the undesirable effects often seen with many osteogenic small molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app