Add like
Add dislike
Add to saved papers

Lin28 overexpression inhibits neurite outgrowth of primary cortical neurons in vitro.

Lin28 has been shown to promote proliferation of progenitors and survival of neurons during cortical neurogenesis. However, the role of Lin28 in the terminal maturation of neurons remains obscured. In this study, we investigated the developmental impact of Lin28 overexpression on neurite outgrowth. Lin28 expression was upregulated by in utero electroporation at E14.5. Two days later, electroporated cortices were dissociated for culturing primary cortical neurons. We found that Lin28 overexpression, which was confirmed immunocytochemically, led to neurite underdevelopment for all time points during culture. Specifically, Lin28-overexpressing cells displayed significantly fewer primary neurites and a decreased dendritic branching index, compared to GFP-expressing controls. Additionally, Lin28 overexpression in primary cortical neurons induced the expression of high mobility group AT-Hook 2 (HMGA2). Taken together, our study demonstrates that constitutive Lin28 expression disrupts cortical neurogenesis resulting in impaired neurite outgrowth with a concomitant induction of HMGA2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app