Add like
Add dislike
Add to saved papers

Visualizing Interactions of Circulating Tumor Cell and Dendritic Cell in the Blood Circulation Using In Vivo Imaging Flow Cytometry.

OBJECTIVE: Visualizing cell interactions in blood circulation is of great importance in studies of anticancer immunotherapy or drugs. However, the lack of a suitable imaging system hampers progress in this field.

METHODS: In this work, we built a dual-channel in vivo imaging flow cytometer to visualize the interactions of circulating tumor cells (CTCs) and dendritic cells (DCs) simultaneously in the bloodstream. Two artificial neural networks were trained to identify blood vessels and cells in the acquired images.

RESULTS AND CONCLUSION: Using this technique, single CTCs and CTC clusters were readily distinguished by their morphology. Interactions of CTCs and DCs were identified, while their moving velocities were analyzed. The CTC-DC clusters moved at a slower velocity than that of single CTCs or DCs. This may provide new insights into tumor metastasis and blood rheology.

SIGNIFICANCE: This in vivo imaging flow cytometry system holds great potential for assessing the efficiency of targeting CTCs with anticancer immune cells or drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app