Add like
Add dislike
Add to saved papers

A pH-Switchable Electrostatic Catalyst for the Diels-Alder Reaction: Progress Towards Synthetically-Viable Electrostatic Catalysis.

Density functional theory calculations at the SMD/M06-2X/6-31+G(d,p)//M06-2X/6-31G(d) level of theory have been used to computationally design and test a pH-switchable electrostatic organocatalyst for Diels-Alder reactions. The successful cata-lyst design, bis(3-(3-phenylureido)benzyl)ammonium, was studied for the reaction of p-quinone with range of cyclic, hetero-cyclic and acyclc dienes and also the reaction of cyclopentadiene with maleimide and N-phenylmaleimide. All reactions showed significant enhancements in catalysis (10-32 kJ mol-1 in barrier lowering) when the catalyst was protonated, con-sistent with electrostatic stabilization of the transition state. Electrostatic effects were found to diminish in polar solvents but were predicted to remain significant in non-polar solvents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app