Add like
Add dislike
Add to saved papers

Enhanced N-acetyl-D-neuraminic production from glycerol and N-acetyl-D-glucosamine by metabolically engineered Escherichia coli with a two-stage pH-shift control strategy.

Typical N-acetyl-D-neuraminic acid (Neu5Ac) production uses N-acetyl-D-glucosamine (GlcNAc) and excess pyruvate as substrates in the enzymatic or whole-cell biocatalysis process. In a previous study, a Neu5Ac-producing biocatalytic process via engineered Escherichia coli SA-05/pDTrc-AB/pCDF-pck-ppsA was constructed without exogenous pyruvate. In this study, glycerol was found to be a good energy source compared with glucose for the catalytic system with resting cells, and Neu5Ac production increased to 13.97 ± 0.27 g L-1 . In addition, a two-stage pH shift strategy was carried out, and the Neu5Ac yield was improved to 14.61 ± 0.31 g L-1 . The GlcNAc concentration for Neu5Ac production was optimized. Finally, an integrated strategy was developed for Neu5Ac production, and the Neu5Ac yield reached as high as 18.17 ± 0.27 g L-1 . These results provide a new biocatalysis technology for Neu5Ac production without exogenous pyruvate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app