JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Crosstalk between MicroRNAs and Peroxisome Proliferator-Activated Receptors and Their Emerging Regulatory Roles in Cardiovascular Pathophysiology.

Peroxisome proliferator-activated receptors (PPARs) play vital roles in cardiovascular pathophysiology, such as energy balance, cell proliferation/apoptosis, inflammatory response, and adipocyte differentiation. These vital roles make PPARs potential targets for therapeutic prevention of cardiovascular diseases (CVDs). Emerging evidence indicates that the crosstalk of microRNAs (miRNAs) and PPARs contributes greatly to CVD pathogenesis. PPARs are inhibited by miRNAs at posttranscriptional mechanisms in the progress of pulmonary hypertension and vascular dysfunction involving cell proliferation/apoptosis, communication, and normal function of endothelial cells and vascular smooth muscle cells. In the development of atherosclerosis and stroke, the activation of PPARs could change the transcripts of target miRNA through miRNA signalling. Furthermore, the mutual regulation of PPARs and miRNAs involves cell proliferation/apoptosis, cardiac remodeling, and dysfunction in heart diseases. In addition, obesity, an important cardiovascular risk, is modulated by the regulatory axis of PPARs/miRNAs, including adipogenesis, adipocyte dysfunction, insulin resistance, and macrophage polarization in adipose tissue. In this review, the crosstalk of PPARs and miRNAs and their emerging regulatory roles are summarized in the context of CVDs and risks. This provides an understanding of the underlying mechanism of the biological process related to CVD pathophysiology involving the interaction of PPARs and miRNAs and will lead to the development of PPARs/miRNAs as effective anti-CVD medications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app