Add like
Add dislike
Add to saved papers

Importance of the commissural nucleus of the solitary tract in renovascular hypertension.

The rodent renovascular hypertension model has been used to investigate the mechanisms promoting hypertension. The importance of the carotid body for renovascular hypertension has been demonstrated. As the commissural NTS (cNTS) is the first synaptic site in the central nervous system that receives information from carotid body chemoreceptors, we evaluated the contribution of cNTS to renovascular hypertension in the present study. Normotensive male Holtzman rats were implanted with a silver clip around the left renal artery to induce two-kidney, one-clip (2K1C) hypertension. Six weeks later, isoguvacine (a GABAA agonist) or losartan (an AT1 antagonist) was injected into the cNTS, and the effects were compared with carotid body removal. Immunohistochemistry for Iba-1 and GFAP to label microglia and astrocytes, respectively, and RT-PCR for components of the renin-angiotensin system and cytokines in the NTS were also performed 6 weeks after renal surgery. The inhibition of cNTS with isoguvacine or the blockade of AT1 receptors with losartan in the cNTS decreased the blood pressure and heart rate of 2K1C rats even more than carotid body removal did. The mRNA expression of NOX2, TNF-α and IL-6, microglia, and astrocytes also increased in the cNTS of 2K1C rats compared to that of normotensive rats. These results indicate that tonically active neurons within the cNTS are essential for the maintenance of hypertension in 2K1C rats. In addition to signals from the carotid body, the present results suggest that angiotensin II directly activates the cNTS and may also induce microgliosis and astrogliosis within the NTS, which, in turn, cause oxidative stress and neuroinflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app