Add like
Add dislike
Add to saved papers

Bioconcentration and ecotoxicity of sulfadiazine in the aquatic midge Chironomus riparius.

Although sulfadiazine (SDZ) is widespread in aquatic environments, information regarding the effects of SDZ on aquatic insects is still limited. In the present study, the bioconcentration and the effects of SDZ on the antioxidant system and the expression of endocrine and stress-related genes in Chironomus riparius larvae were investigated. The larvae were exposed to SDZ at the nominal concentrations of 2, 20 and 200 μg/L for 48 h. The results showed that SDZ was taken up by C. riparius despite presenting low bioconcentration factor values (0.99-3.92). In addition, superoxide dismutase activity was markedly reduced compared with the control group, whereas the levels of malondialdehyde were not significantly affected by SDZ. Moreover, the mRNA expression of genes related to heat shock proteins (Hsp70 and Hsp27) and ecdysone pathway (EcR and E74) were significantly up-regulated following all SDZ treatments. In aggregate, our work provides novel and interesting results regarding the potential biochemical and genetic effects of SDZ on freshwater insects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app