Add like
Add dislike
Add to saved papers

Adsorption of heptane-toluene binary mixtures on a hydrophobic polymer surface.

Polymer coatings offer a means to modulate the adsorption of molecules onto solid surfaces by offering a surface functionality, charge, roughness, and hydrophobicity that is different from the underlying substrate. One application is to provide anti-fouling functions for metal surfaces. Understanding solvent-surface interactions is an essential component to gaining mechanistic insight into the adsorption process. In this work, we study the adsorption of toluene-heptane binary mixtures onto a perflurorinated polymer surface. We use a combination of IR absorption and Raman scattering spectroscopy to study the mixture in the bulk phase, and surface-specific visible-infrared sum-frequency generation to probe the surface layers. Through the use of homo- and heterospectral two-dimensional correlation spectroscopy, we conclude that the adsorption of the two solvents is reversible and that the surface structure is generally independent of the surface composition, with a small change in toluene orientation as the toluene content increases. We also find that the hydrophobic fluropolymer has very little preference for either solvent, similar to previous studies on hydrophilic surfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app