Add like
Add dislike
Add to saved papers

Particle and inhalation exposure in human and monkey computational airway models.

Inhalation Toxicology 2019 January 9
Regional deposition of inhaled aerosols is essential for assessing health risks from toxic exposure. Upper airway physiology plays a significant role in respiratory defense by filtering micrometer particles, whose deposition mechanism is predominantly inertial impaction and is mainly controlled by airflow characteristics. The monkey is commonly used in tests that study inhalation toxicity as well as in preclinical tests as human surrogates due to their anatomical similarities to humans. Therefore, accurate predictions and an understanding of the inhaled particles and their distribution in monkeys are essential for extrapolating laboratory animal data to humans. The study goals were as follows: (1) to predict the particle deposition based on aerodynamic diameters (1-10 µm) and various steady inspiratory flow rates in computational models of monkey and human upper airways; and (2) to investigate potential differences in inhalation flow and particle deposition between humans and monkeys by comparing numerical simulation results with similar in-vitro and in-vivo measurements from recent literature. The deposition fractions of the monkey's numerical airway model agreed well with in-vitro and human model data when equivalent Stokes numbers were compared, based on the minimum cross-sectional area as representative of length scale. Vestibule removal efficiencies were predicted to be higher in the monkey model compared with the human model. Our results revealed that the particle transportations were sensitive to the anatomical structure, airway geometry, airflow rates, inflow boundary conditions and particle size.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app