Add like
Add dislike
Add to saved papers

Genome-wide analysis of the Hsf gene family in Brassica oleracea and a comparative analysis of the Hsf gene family in B. oleracea, B. rapa and B. napus.

The global climate change-induced abiotic and biotic stresses are predicted to affect crop-growing seasons and crop yield. Heat stress transcription factors (Hsfs) have been suggested to play a significant role in various stress responses. They are an integral part of the signal transduction pathways that operate in response to environmental stresses. Brassica oleracea is one of the agronomical important crop species which consists of cabbage, cauliflower, broccoli, Brussels sprout, kohlrabi and kale. The identification and roles of Hsfs in this important Brassica species are unknown. The availability of whole genome sequence of B. oleracea provides us an opportunity for performing in silico analysis of Hsf genes in B. oleracea. Thirty-five putative genes encoding Hsf proteins were identified and classified into A, B and C classes. Their evolution, physical location, gene structure, domain structure and tissue-specific expression patterns were investigated. Further, a comparative analysis of the Hsf gene family in B. oleracea, B. rapa and B. napus highlighted the role of hybridisation and allopolyploidy in the evolution of the largest known Hsf gene family in B. napus. The presence of orthologous gene clusters, found in Brassica species, but not in A. thaliana, suggested that polyploidisation has resulted in the formation of new Brassica-specific orthologous gene clusters. Gene duplication analysis indicated that the evolution of the Hsf gene family was under strong purifying selection in these Brassica species. High-level synteny was observed within the B. napus genome. Conservation of physical location, the similarity of structure and similar expression profiles between the B. napus Hsf genes and the corresponding genes from B. oleracea and B. rapa suggest a high functional similarity between these genes. This study paves the way for further investigation of Hsf genes in improving stress tolerance in B. oleracea. The genes thus identified may be useful for developing crop varieties resilient to the global climate change.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app