JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Therapeutic Approaches to Alzheimer's Disease Through Modulation of NRF2.

The nuclear factor erythroid-derived 2-related factor 2 (NFE2L2/NRF2) is a master transcription factor that regulates oxidative stress-related genes containing the antioxidant response element (ARE) in their promoters. The damaged function and altered localization of NRF2 are found in most neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis. These neurodegenerative diseases developed from various risk factors such as accumulated oxidative stress and genetic and environmental elements. NRF2 activation protects our bodies from detrimental stress by upregulating antioxidative defense pathway, inhibiting inflammation, and maintaining protein homeostasis. NRF2 has emerged as a new therapeutic target in AD. Indeed, recent studies revealed that NRF2 activators have therapeutic effects in AD animal models and in cultured human cells that express AD pathology. This review will focus on the NRF2 pathway and the role of NRF2 in AD and suggest some NRF2 inducers as therapeutic agents for AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app