JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Dispersive Single-Atom Metals Anchored on Functionalized Nanocarbons for Electrochemical Reactions.

The use of dispersive single-atom metals anchored on functionalized carbon nanomaterials as electrocatalysts for electrochemical energy conversion reactions represents a burgeoning area of research, due to their unique characteristics of low coordination number, uniform coordination environment, and maximum atomic utilization. Here we highlight the advanced synthetic methods, characterization techniques, and electrochemical applications for carbon-based single-atom metal catalysts, and provide illustrative correlations between molecular/electronic structures and specific catalytic activity for O2 reduction, water splitting, and other emerging reactions including CO2 reduction, H2 O2 production, and N2 reduction. We also discuss fundamental principles for the future design of carbon-based single-atom metal catalysts for specific electrochemical reactions. In addition, we explore the challenges and opportunities that lie ahead in further work with carbon-based single-atom metal electrocatalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app