Add like
Add dislike
Add to saved papers

Acute and chronic methylphenidate administration in intact and VTA-specific and nonspecific lesioned rats.

Methylphenidate (MPD) is a psychostimulant used for the treatment of ADHD and works by increasing the bioavailability of dopamine (DA) in the brain. As a major source of DA, the ventral tegmental area (VTA) served as the principal target in this study as we aimed to understand its role in modulating the acute and chronic MPD effect. Forty-eight male Sprague-Dawley rats were divided into control, sham, electrical lesion, and 6-OHDA lesion groups. Given the VTA's implication in the locomotive circuit, three locomotor indices-horizontal activity, number of stereotypy, and total distance-were used to measure the animals' behavioral response to the drug. Baseline recording was obtained on experimental day 1 (ED 1) followed by surgery on ED 2. After recovery, the behavioral recordings were resumed on ED 8. All groups received daily intraperitoneal injections of 2.5 mg/kg MPD for six days after which the animals received no treatment for 3 days. On ED 18, 2.5 mg/kg MPD was re-administered to assess for the chronic effect of the psychostimulant. Except for one index, there was an increase in locomotive activity in all experimental groups after surgery (in comparison to baseline activity), acute MPD exposure, induction with six daily doses, and after MPD re-challenge. Furthermore, the increase was greatest in the electrical VTA lesion group and lowest in the 6-OHDA VTA lesion group. In conclusion, the results of this study suggest that the VTA may not be the primary nucleus of MPD action, and the VTA plays an inhibitory role in the locomotive circuit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app