Add like
Add dislike
Add to saved papers

Remarkable apoptotic pathway of Hemiscorpius lepturus scorpion venom on CT26 cell line.

OBJECTIVE: Scorpion venom, considered as a treasure trove of various bioactive molecules, is a new approach to induce cancer cell death via apoptosis pathways. In the present study, we evaluated for first time the anti-proliferative efficacy of Hemiscorpius lepturus scorpion venom and its pathway on a colon carcinoma cell.

MATERIALS AND METHODS: The CT26 and VERO cell lines were treated with various concentrations of the venom. The IC50 values were estimated by MTT assay test, and the apoptosis was evaluated by flow cytometry. Moreover, RT-PCR analysis was used to investigate the levels of Bax, Bcl2, Trp53, and Casp3 mRNA expression. The mice xenograft model was established to evaluate the therapy efficiency of venom. Some valuable exponential growth parameters were evaluated in treated mice.

RESULT: The scorpion venom inhibited the growth of CT26 cells with an IC50 value about 120 μg/ml. However, VERO cells increased to 896 μg/ml under the same condition. A remarkable apoptotic cells in CT26 cells were revealed by flow cytometry assay. A significant over-expression was observed in Bax, Casp3, and Trp53 and downregulated in Bcl2 mRNA level in tumor tissue after treatment with scorpion venom (p < 0.05). All changes of valuable exponential growth parameters showed a shrinking tumor size.

CONCLUSION: Our findings indicated that Hemiscorpius lepturus venom has a special anti-proliferative effect on CT26 cells via Trp53/Bcl2/Casp3 pathway. Considering its powerful cytotoxic vigor against a colon cancer cell (CT26) and low toxicity to non-tumorigenic cell (VERO), we propose that this venom probably has a specific effect on other colon cancer cells and may turn out to be a novel therapeutic strategy in treating colon cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app