Add like
Add dislike
Add to saved papers

Protein Phase Separation as a Stress Survival Strategy.

Cells under stress must adjust their physiology, metabolism, and architecture to adapt to the new conditions. Most importantly, they must down-regulate general gene expression, but at the same time induce synthesis of stress-protective factors, such as molecular chaperones. Here, we investigate how the process of phase separation is used by cells to ensure adaptation to stress. We summarize recent findings and propose that the solubility of important translation factors is specifically affected by changes in physical-chemical parameters such temperature or pH and modulated by intrinsically disordered prion-like domains. These stress-triggered changes in protein solubility induce phase separation into condensates that regulate the activity of the translation factors and promote cellular fitness. Prion-like domains play important roles in this process as environmentally regulated stress sensors and modifier sequences that determine protein solubility and phase behavior. We propose that protein phase separation is an evolutionary conserved feature of proteins that cells harness to regulate adaptive stress responses and ensure survival in extreme environmental conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app