Add like
Add dislike
Add to saved papers

The expression of the genes involved in redox metabolism and hydrogen peroxide balance is associated with the resistance of cowpea [Vigna unguiculata (L.) Walp.] to the hemibiotrophic fungus Colletotrichum gloeosporioides.

Correlations between the transcriptional responses of genes that encode superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxiredoxin (Prx) enzymes and Colletotrichum gloeosporioides development in cowpea leaves were assessed. Each of these genes is involved in the redox metabolism and hydrogen peroxide balance. Although electron microscopy revealed that conidia adhered to and germinated on the leaf cuticle, the inoculated cowpea leaves did not show any characteristic anthracnose symptoms. The adhered and germinated conidia showed irregular surfaces and did not develop further. This was apparently due to increased leaf H2 O2 levels in response to inoculation with C. gloeosporioides. During the early stages post inoculation, cowpea leaves elevated the H2 O2 content and modulated the defense gene expression, as well as associated pathways. During the later stages, the increased expression of the CuZnSODI and CuZnSODII genes suggested an active superoxide dismutation to further elevate H2 O2 levels, which indicated that higher H2 O2 content may function as a toxic agent that kills the fungus. The second increase in H2 O2 production above the threshold level was correlated with the expression of the APXI, CATI, CATII, PrxIIBCD, and PrxIIE genes, which resulted in a coordinated pattern to establish an appropriate balance between H2 O2 generation and scavenging. Therefore, appropriate H2 O2 content in cowpea leaves inhibited C. gloeosporioides development and maintained intracellular redox homeostasis to avoid uncontrolled programmed cell death and necrosis in cowpea leaves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app