Add like
Add dislike
Add to saved papers

Wnt/β-catenin signaling in the mouse embryonic cranial mesenchyme is required to sustain the emerging differentiated meningeal layers.

Cranial neural crest cells (CNCC) give rise to cranial mesenchyme (CM) that differentiates into the forebrain meningeal progenitors in the basolateral and apical regions of the head. This occurs in close proximity to the other CNCC-CM-derivatives such as calvarial bone and and dermal progenitors. We found active Wnt signaling transduction in the forebrain meningeal progenitors in basolateral and apical populations and in the non-meningeal CM preceding meningeal differentiation. Here, we dissect the source of Wnt ligand secretion and requirement of Wnt/β-catenin signaling for the lineage selection and early differentiation of the forebrain meninges. We find persistent canonical Wnt/β-catenin signal transduction in the meningeal progenitors in the absence of Wnt ligand secretion in the cranial mesenchyme or surface ectoderm, suggesting additional sources of Wnts. Conditional mutants for Wntless and β-catenin in the cranial mesenchyme showed that Wnt ligand secretion and Wnt/β-catenin signaling were dispensable for specification and proliferation of early meningeal progenitors. In the absence β-catenin in the CM, we found diminished laminin matrix and meningeal hypoplasia, indicating a structural and trophic role of mesenchymal β-catenin signaling. This study shows that β-catenin signaling is required in the cranial mesenchyme for maintenance and organization of the differentiated meningeal layers in the basolateral and apical populations of embryonic meninges. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app