Add like
Add dislike
Add to saved papers

Monte Carlo type Simulations of Mineralized Collagen Fibril based on Two Scale Asymptotic Homogenization.

A multi-scale model for mineralized collagen fibril is proposed by taking into account the uncertainties associated with the geometrical properties of mineral phase and its distribution in the organic matrix. The asymptotic homogenization approach along with periodic boundary conditions has been used to derive the effective elastic moduli at two hierarchical length scales, namely: microfibril and mineralized collagen fibril. The uncertainties associated with the mineral plates have been directly included in the finite element mesh by randomly varying their sizes. A total 100 realizations for mineralized collagen fibril model with random distribution have been generated using an in-house MATLAB® code and Monte-Carlo type simulations have been performed under tension load to obtain the statistical equivalent modulus. The deformation response has been studied in both small (= 10%) and large (= 10%) strain regimes. The stress transformation mechanism has also been explored in microfibril which showed stress relaxation in the organic phase upon different stages of mineralization. The elastic moduli for microfibril under small and large strain have been obtained as 1.88 and 6.102 GPa, respectively, and have been used as input for upper scale homogenization procedure. Finally, the characteristic longitudinal moduli of the mineralized collagen fibril in the small and large strain regimes are obtained as 4.08 ± 0.062 and 12.93 ± 0.148 GPa, respectively. All the results are in good agreement to those obtained from previous experiments and molecular dynamics simulations in the literature with a significant reduction in the computational cost.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app